首页> 外文OA文献 >Vesicularity, bubble formation and noble gas fractionation during MORB degassing
【2h】

Vesicularity, bubble formation and noble gas fractionation during MORB degassing

机译:mORB期间的囊泡,气泡形成和惰性气体分馏   脱气

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The objective of this study is to use molecular dynamics simulation (MD) toevaluate the vesicularity and noble gas fractionation, and to shed light onbubble formation during MORB degassing. A previous simulation study (Guillotand Sator (2011) GCA 75, 1829-1857) has shown that the solubility of CO2 inbasaltic melts increases steadily with the pressure and deviates significantlyfrom Henry's law at high pressures (e.g. 9.5 wt% CO2 at 50 kbar as comparedwith 2.5 wt% from Henry's law). From the CO2 solubility curve and the equationsof state of the two coexisting phases (silicate melt and supercritical CO2),deduced from the MD simulation, we have evaluated the evolution of thevesicularity of a MORB melt at depth as function of its initial CO2 contents.An excellent agreement is obtained between calculations and data on MORBsamples collected at oceanic ridges. Moreover, by implementing the testparticle method (Guillot and Sator (2012) GCA 80, 51-69), the solubility ofnoble gases in the two coexisting phases (supercritical CO2 and CO2-saturatedmelt), the partitioning and the fractionation of noble gases between melt andvesicles have been evaluated as function of the pressure. We show that themelt/CO2 partition coefficients of noble gases increase significantly with thepressure whereas the large distribution of the 4He/40Ar* ratio reported in theliterature is explained if the magma experiences a suite of vesiculation andvesicle loss during ascent. By applying a pressure drop to a volatile bearingmelt, the MD simulation reveals the main steps of bubble formation and noblegas transfer at the nanometric scale. A key result is that the transfer ofnoble gases is found to be driven by CO2 bubble nucleation, a finding whichsuggests that the diffusivity difference between He and Ar in the degassingmelt has virtually no effect on the 4He/40Ar* ratio measured in the vesicles.
机译:这项研究的目的是使用分子动力学模拟(MD)来评估囊泡和稀有气体的分馏,并阐明MORB脱气过程中形成气泡的可能性。先前的模拟研究(Guillotand Sator(2011)GCA 75,1829-1857)表明,CO2玄武质熔体的溶解度随压力稳定增加,并且在高压下明显偏离亨利定律(例如,与50 kbar相比9.5 wt%CO2亨利定律的2.5 wt%)。根据MD模拟得出的CO2溶解度曲线和两个共存相(硅酸盐熔体和超临界CO2)的状态方程,我们评估了MORB熔体在深处的囊泡演变与其初始CO2含量的关系。在海洋脊收集的MORB样本的计算和数据之间获得了极好的一致性。此外,通过实施测试粒子方法(Guillot和Sator(2012)GCA 80,51-69),稀有气体在两个共存相(超临界CO2和CO2饱和熔体)中的溶解度,稀有气体在熔体之间的分配和分馏囊泡已被评估为压力的函数。我们显示,稀有气体的主题/ CO2分配系数随压力显着增加,而如果文献报道岩浆在上升过程中经历了一系列的囊泡化和囊泡损失,则解释了文献中报道的4He / 40Ar *比的较大分布。通过对挥发性轴承熔体施加压降,MD模拟揭示了纳米级气泡形成和惰性气体转移的主要步骤。关键结果是发现稀有气体的传输是由CO2气泡成核作用驱动的,这一发现表明,脱气熔体中He和Ar之间的扩散率差异实际上对囊泡中的4He / 40Ar *比没有影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号